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Abstract

Motivated by practical applications in e-commerce, we consider a product promotion problem where a product show-
case webpage is personalized for each arriving consumer during a campaign. The product has various characteristics
that may affect the consumers’ willingness to purchase, and each consumer may weigh these characteristics differ-
ently. However, showing all the product characteristics to consumers can sometimes lead to information overload,
which means consumers can be less interested in the product when facing too much information on the product.
Based on the evidence from a field experiment, we build a feature-based logit model to capture the information
overload effect in the consumer choice behavior such as clicking. Faced with this probabilistic choice model with
unknown parameters, we design a statistical learning algorithm that carefully perturbs the showing characteristics of
the product and then exploits the estimated model to optimize the product display page for each arriving consumer.
By dedicating

√
T periods to exploration, the algorithm leveraging the maximum likelihood estimation achieves the

expected cumulative regret of order
√
T log T . Finally, we conduct a B2B field experiment in collaboration with

a medical agent who sells tissue simulation equipment for medical imaging and radiation therapy to institutions in
China. In this field experiment, we randomly display different versions of a product webpage to arriving customers,
where these versions differ in the amount of displayed product information. Observing the information overload
phenomenon from the experimental data, we empirically test the performance of our proposed algorithm.

Keywords: information overload, binary logit, dynamic learning, regret, field experiment.

1 Introduction
Information disclosure refers to the practice of sharing or releasing data, often personal or sensitive, by individuals
or organizations. This can range from voluntarily sharing personal details on social media to companies disclosing
product information to consumers. However, information overload occurs when the volume and velocity of informa-
tion available surpasses an individual’s or organization’s capacity to process it effectively (Eppler and Mengis 2008,
Bawden and Robinson 2020), leading to confusion, anxiety, and stress, which impairs decision-making capabilities.
This phenomenon is exacerbated in the digital era, characterized by the abundant availability and rapid dissemination
of information via social media and other online platforms. This overload presents significant challenges across var-
ious domains: on social media platforms, users are bombarded with a continuous stream of updates, photos, videos,
and tweets; the proliferation of internet news sources inundates users with information on a myriad of topics, from
politics to entertainment; in online learning, students face an excess of educational material; in health and wellness,
the vastness of online information makes discerning reliable sources difficult; and in e-commerce, consumers are
overwhelmed by extensive product details, reviews, and pricing options.

The information overload exists widely in various fields. In psychology, Milgram (1970) observes that signal
overload in urban environments contributes to antisocial behavior. In the medical sector, Laker et al. (2018) identify
that the overuse of electronic health records and other clinical data impedes the timeliness of doctors’ clinical decision-
making. Similarly, empirical evidence in business, such as A/B testing results from B2C (business-to-consumer) and
B2B (business-to-business) markets, substantiates the presence of information overload.
1.1 Motivating Example
We procure the data from Air China, who conducted an A/B test about the display mode of the passenger’s fare page.
In this A/B test, they randomly display two versions of the fare page to the website visitors. One version is the original
version Air China has used before, called version A; the other version is the lite version, called version B (see the
screenshots, i.e., Figures 1a and 1b). In short, the lite version only displays the most basic information explicitly
but hides the other more advanced detailed information in web hyperlinks or pop-ups, which only appear when the
passenger clicks on the corresponding buttons, compared to the original version.
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(a) Original version (version A). (b) Lite version (version B).

Figure 1: Air China fare page.

The commonalities are that both versions display the “Fare Details” module that entails the flight price (including
the base fare price, taxes and fees, the total price, etc.) and the signature box for passengers to agree with the terms.
However, in addition to the flight price, version A also displays other modules explicitly on the fare page, such as
“Fare Rules”, “Baggage Allowance”, and “Travel Documents”. Specifically, “Fare Rules” includes information about
the seat classes for each flight, the change penalty fee, the refund penalty fee, rebooking details, notes on refunds, and
additional notes. “Baggage Allowance” includes information about the maximum weight and size constraints on the
checked bag and carry-on bag. “Travel Documents” contains a statement that reminds passengers to bring with them
the required valid travel document (passport and visa) and comply with the regulatory and statutory entry/exit/transit
requirements of the country or region they travel to. In comparison, version B does not show these modules explicitly
on the fare page but only provides hyperlinks to the pop-ups in case the passengers are interested. Because of this
difference, the lite version (version B) has a shorter fare page displaying less information to passengers.

Air China tests whether the lite version of the fare page can increase the conversion rate (the number of order
checkouts divided by the number of visits to the webpage, multiplied by 100 to get a percentage), or decrease the
bounce rate (the percentage of passengers who land on the webpage but just leave without triggering another request
such as ordering a plane ticket). In the experiment period (from October 25, 2021, to November 24, 2021), 81078
visitors were assigned to the group of the website with original fare pages, and they placed 1392 orders; at the same
time, 87244 visitors were assigned to the group of the website with lite fare pages, and 1918 orders are placed. Table 1
demonstrates that more information would lead to less order and a smaller conversion rate.

Table 1: Statistical Evidence for Impact of Information on Consumer Behavior

Unique visitors to website Orders Rate
Original version (A) 81078 1392 1.72%

Lite version (B) 87244 1918 2.20%

Comparison N/A N/A ↑ 27.91%

p-value N/A N/A 1.44× 10−12

1.2 Our Setting
We study how to dynamically adjust the product elements displayed on the recommendation page to maximize cus-
tomers’ willingness to click (purchase). To this end, we construct a recommendation system framework with one seller
and T customers. The product display webpage is personalized for each arriving customer. The product has different
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features, and consumers have different weights for these features, which affects the customers’ click behavior. Show-
ing all the features of a product to consumers can sometimes cause decision fatigue and overwhelm customers, i.e., the
phenomenon of information overload. To avoid losses caused by information overload, the seller can filter and display
effective product features while optimizing the current push mode based on historical data. In detail, customer clicks
can be characterized as binary click behavior. We establish a new feature-based logit model that uses click probability
to measure the degree of match between the recommendation list and consumer interests.

Our feature-based logit model incorporates the information overload phenomenon by explicitly characterizing the
cognitive burden of displaying additional product features on customers’ willingness to click. We consider an online
setting, where the seller can learn from past observations of customer responses to different product display pages. The
customers’ binary click behavior is viewed as bandit feedback; the seller only obtains feedback for her chosen display
of product features and does not observe (counterfactual) responses to alternative product displays for each customer.
Therefore, the seller needs to carefully experiment with different product display pages to obtain accurate estimates of
customers’ matching weights for product features and the magnitude of the information overload effect (exploration)
so that she can optimize the product display page and maximize customers’ willingness to click (exploitation).

In this paper, we propose a new statistical learning algorithm in the bandit setting leveraging maximum likelihood
estimation. In the presence of the information overload effect, our setting is different from the contextual generalized
linear bandit problem. This feature requires us to introduce new conditions for selecting experimenting product dis-
plays in the exploration stage, so that we can effectively learn the customers’ weights for product features and estimate
the information overload parameter relating to the total number of chosen features. We measure the algorithm’s per-
formance using the standard notion of expected cumulative regret, which is the total expected loss in reward compared
to a clairvoyant’ oracle that knows all the model parameters. Our main result establishes that our algorithm achieves
the expected cumulative regret that scales in the rate of

√
T log T over the total number of customers T .

Finally, to demonstrate the information overload phenomenon in practical applications, we conducted a B2B
field experiment in collaboration with a medical agent who sells tissue simulation equipment for medical imaging
and radiation therapy to institutions in Mainland China. We select a popular product and randomly display different
versions of the product page to arriving customers. In addition to the basic information about the product, these
versions differ in whether displaying additional graphical or text information to customers. By collecting the clicking
data of these customers, we find that while the sole graphical or text information boosts the customers’ clicking rate,
adding both graphical and text information can cause the customers’ clicking rate to drop. Therefore, we calibrate our
model with the experimental data and empirically test our proposed algorithm’s performance.
1.3 Related Literature
The concept of information overload has been a focal point in economics and marketing research. Early studies by
Jacoby et al. (1974) and Malhotra (1982) have highlighted the potential dysfunctions arising from providing consumers
with excessive information. This body of literature suggests that an overload of information can negatively impact
consumer behavior and decision-making processes. Central to this discussion is the classical information-processing
theory on consumer choice (Bettman 1979), which posits that consumers have limited capacities in terms of working
memory and computational capabilities. Jacoby (1984) assert that information overload can occur in various settings,
affecting consumer behavior. Iyengar and Lepper (2000) and Kuksov and Villas-Boas (2010) demonstrate through
experiments and analytical models that offering fewer product choices could actually enhance consumer purchasing
likelihood, as excessive options can increase search and evaluation costs, deterring consumers from making choices.
Overall, there is a consensus in this literature that the burden of information load can adversely affect individual
performance.

There is an increasing number of models that incorporate information overload for consumers. Schmit and Johari
(2018) introduce the consumer abandonment behavior caused by too much information into a learning model. Cao
and Sun (2019) observe that overexposure to marketing activities could lead to customer dissatisfaction and integrate
this into a dynamic model where marketing fatigue results in platform abandonment. Goutam et al. (2019) develop
a Markov Chain Model to capture the choice overload of consumers. Research also focuses on recommendation
mechanisms, where sellers devise optimal information strategies to promote product purchases. Gao et al. (2021)
explore assortment optimization for impatient customers, while Feldman and Segev (2022) employ polynomial-time
approximation schemes to enhance algorithmic accuracy in this context. However, our concern lies more with how
the extent of product information disclosure affects consumer purchasing willingness. Bastani et al. (2022) delve into
learning personalized product recommendations considering customer disengagement, offering a nuanced perspective
on balancing information provision with customer engagement. Küçükgül et al. (2022) use a dynamic Bayesian
persuasion framework to study optimal dynamic information provision for maximizing revenue.
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2 Problem Formulation
Consider a firm, hereafter referred to as the seller, that promotes a product online and displays a varying recommen-
dation page to T customers who arrive sequentially. Regarding each recommendation opportunity as a “period,” the
seller has a discrete time horizon of T periods and dynamically adjusts the product elements shown on the recom-
mendation page over the time horizon. For expositional convenience, we also call the customer arriving in period t as
customer t.

At the beginning of period t, the seller observes a n-dimensional vector of features pertaining to the arriving
customer t. Let Xt = (Xt,1, Xt,2, . . . , Xt,n)

T denote the customer’s feature vector, where each component denotes
one customer feature, such as the customer’s self-identified gender, age range, location, and data pertaining to the
customer’s past purchases. We assume that {Xt, t ∈ [T ]} are independent and identically distributed with a compact
support X ⊂ B0(xmax) ⊂ Rn, where B0(xmax) is a n-dimensional ball of radius xmax > 0. Without loss of
generality, we normalize E[Xt] to zero. We also denote the covariance matrix of Xt by ΣX := E[XtX

T
t ] and

assume that ΣX is symmetric and positive-definite. For convenience, we introduce an augmented customer feature
vector X̄t := [1 XT

t ]
T . Since customers’ preferences over the product are correlated to their own features, we use

Z̄t := Θ̄X̄t to denote a customer’s preference vector over various product features, where Θ̄ is a m × (n + 1) fixed
matrix with unknown parameters. Note that Z̄t,i denotes the customer’s preference score for the ith feature of the
product that may or may not be shown by the seller on the recommendation page.

For each customer, upon observing Xt = xt, the seller can choose to display some of the m product features,
such as a photo of the product or a piece of brand description, on the recommendation page and hide the other
under an “expand more” button. Precisely, the seller’s decision vector in period t is an m-dimensional binary vector
at ∈ {0, 1}m, where at,i = 1 if and only if the seller displays the ith product feature to customer t. Given the seller’s
decision at, customer t’s preference for the product is

Ūt := ᾱ · x̄t + at · z̄t,
where ᾱ ∈ Rn+1 is an unknown vector related to the intercept of customers’ preference function, x̄t = [1 xT

t ]
T ,

z̄t = Θ̄x̄t, and u · v denotes the inner product of two vectors with the same dimension. Note that Ūt captures feature-
dependent customer’s general interest for the product (through ᾱ · x̄t) and feature-dependent preference scores for each
display option of product features (through z̄t,i, i ∈ [m]).

After viewing the product recommendation page, the customer can click on the button that brings her to the next
step (e.g., shopping cart) or just leave. Hereafter, we will refer to the customer’s behavior as a click. The probability of
customer t’s click is affected by her preference for the product Ūt, which depends on the customer’s features xt and the
seller’s display of product features at. Moreover, motivated by the field experiment evidence in Section 1, information
overload is an important factor that can influence the customer’s click behavior. When a customer is recommended
a product or service, too much information (e.g., overly detailed descriptions) can make the recommendation less
attractive. Therefore, to incorporate the information overload effect, we use a new binary logit model to characterize
the customer’s click behavior. Specifically, given a customer’s feature vector x ∈ X , the click probability in response
to the seller’s decision a = (a1, a2, . . . , am)T ∈ {0, 1}m is

P̄ (a;x, Θ̄, ᾱ, β) :=
eŪ

eβg(
∑m

i=1 1{ai=1}) + eŪ
, (1)

Where: Ū = ᾱ · x̄ + a · z̄ (note that z̄ = Θ̄x̄ and x̄ = [1 xT ]T ), β > 0 is an unknown parameter characterizing
the magnitude of information overload effect, and g(·) is an increasing function with g(0) = 0. Common choices
of g(·) include simple convex functions, such as g(x) = x2 and g(x) = ex. The nonlinearity of g(·) offers us more
flexibility in modeling the information overload effect. When more product features are displayed by the seller, the
term exp(βg(

∑m
i=1 1{ai = 1})) in the denominator will be larger and hence decrease the click probability. We

define c :=
∑m

i=1 1{ai = 1} as the total number of selected product features (“c” represents “count”), and the term
exp(βg(c)) reflects the information overload effect in the probabilistic click model (1).

For convenience, we use Θ̄i to denote the ith row of Θ̄. Then, let θ̄ := (Θ̄1, . . . , Θ̄m, ᾱT , β)T and θ̄box be a
compact rectangle in R(n+1)(m+1)+1 from which the value of θ̄ is chosen, where θ̄box ⊃ { ˜̄θ ∈ R[(n+1)(m+1)+1]|∥ ˜̄θ −
θ̄∥2 ≤ 1}. Now, we impose a margin condition on the customer feature distribution adapted from the bandit literature.
This assumption ensures that the density of the customer feature distribution should be bounded near a decision
boundary, i.e., the intersection of a hypersurface {x ∈ Rn : P̄ (a1;x, θ̄) − P̄ (a2;x, θ̄) = 0} and X for any different
product displays a1 ̸= a2 ∈ {0, 1}m. (We allow the customer feature distribution to have point masses on decision
boundaries.)

Assumption 1. (MARGIN CONDITION) There exists a constant C∗ ∈ R+ such that for all product displays a1, a2 in
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{0, 1}m where a1 ̸= a2, PX

[
0 <

∣∣P̄ (a1;X, θ̄)− P̄ (a2;X, θ̄)
∣∣ ≤ κ

]
≤ C∗κ for all κ ∈ R+.

This assumption requires that the probability of the customer feature vector Xt drawn near a decision boundary is
proportional to how close the rewards resulting from two product displays are. When the realization of the customer
feature vector Xt is close to (but not on) a decision boundary, i.e., Xt ∈ {x ∈ X : 0 <

∣∣P̄ (a1;x, θ̄)− P̄ (a2;x, θ̄)
∣∣ ≤

κ}, even small errors in parameter estimation can cause the seller to choose the suboptimal product display (between
the two choices a1 and a2) because the rewards for both displays are nearly equal. Therefore, if a disproportionate
fraction of observed customer feature vectors are drawn near these decision boundaries (hypersurfaces), the seller can
perform poorly. This assumption was introduced into the classification literature by Tsybakov (2004) and highlighted
in bandit settings by Goldenshluger and Zeevi (2013), Bastani and Bayati (2020). In particular, if we restrict our
attention to product displays with only a single feature, i.e., a1, a2 ∈ {ei}mi=1 and the linear information overload
effect, i.e., g(x) = x, our problem is reduced to a contextual generalized linear bandit problem and Assumption 1
degenerates to the margin condition assumption in Bastani and Bayati (2020). In practical applications, most customer
feature distributions can satisfy Assumption 1, including continuous customer features with bounded density in the
support and categorical customer features with discrete distribution.

In period t, the seller observes customer t’s binary response to the product recommendation page, either click
or not. Let Ft ∈ {0, 1} denote customer t’s bandit feedback. Then, Ft follows a Bernoulli distribution with mean
P̄ (at;xt, θ̄). The seller’s objective is to maximize the total click-through rate while facing uncertainty in the market.
For illustration, suppose that the seller earns a unit revenue from every click. If the seller knew θ̄ in advance, referred
to as the clairvoyant, then she can maximize the expected single-period revenue by solving maxa∈{0,1}m P̄ (a;x, θ̄)
upon observing the customer’s feature x ∈ X . An optimal solution a∗(x, θ̄) must exist since the feasible set is a
finite set, and we define P̄ ∗(x, θ̄) := P̄ (a∗(x, θ̄);x, θ̄). To solve a∗(x, θ̄), the clairvoyant must weigh the tradeoff
between increasing the product’s overall attraction by including attractive product features (with positive z̄i) and the
negative effect of overloading (β). Although for the general function g(·), there does not exist a closed-form solution
for a∗(x, θ̄), we have the following proposition.

Proposition 1. (CLAIRVOYANT’S OPTIMAL DISPLAY) Suppose that the seller observes the customer’s feature vector
x ∈ X . Let z̄i1 ≥ z̄i2 ≥ . . . ≥ z̄in be the sorted sequence of z̄i := (Θ̄x̄)i, i = 1, . . . ,m. Then, a∗(x, θ̄) :=
argmaxa∈{0,1}m P̄ (a;x, θ̄) must be of the following form

a∗il(x, θ̄) =

{
1, if l ≤ k

0, if l > k
, for some k ∈ {0, . . . ,m}.

Now, we specify the seller’s admissible display policies. First, we construct a sequence of historical data vectors
as H0 = (X1) and Ht = (a1, . . . , at, F1, . . . , Ft, X1, . . . , Xt+1) for t ∈ [T ]. Then, we define an admissible policy
as a sequence of functions π = (π1, π2, . . .), where πt : R(t−1)(m+n+1)+n → {0, 1}m is a measurable function that
maps Ht−1 to the seller’s display for customer t, aπt . Thus, under policy π, aπt = πt(Ht−1), for t ∈ [T ]. We denote
by Π the set of all admissible policies.

Given policy π ∈ Π and θ̄ ∈ θ̄box, define a probability measure Pπ
θ̄
(·) on the sample space of customers’ binary

feedback sequences F = (F1, F2, . . .) such that

Pπ
θ̄ (F1 = f1, . . . , FT = fT ) =

T∏
t=1

(
eŪt

eβg(ct) + eŪt

)ft (
1− eŪt

eβg(ct) + eŪt

)1−ft

,

for f1, f2, . . . , fT ∈ {0, 1}. The seller’s conditional expected revenue loss in T periods relative to a clairvoyant who
knows the underlying parameter vector θ̄ is defined as

∆π
θ̄ (T ;XT ) = Eπ

θ̄

(
T∑

t=1

[P̄ ∗(Xt, θ̄)− P̄ (aπt ;Xt, θ̄)]

∣∣∣∣XT

)
, (2)

for θ̄ ∈ θ̄box, π ∈ Π, and XT = (X1, . . . , XT ) ∈ X T , where: Eπ
θ (·) is the expectation operator associated with Pπ

θ (·).
We call this performance metric (2) as the seller’s T -period conditional regret, which is a random variable depending
on the realization of XT = (X1, . . . , XT ). The seller’s objective is to minimize its T -period expected regret

∆π
θ̄ (T ) = EX [∆π

θ̄ (T ;XT )],
for θ̄ ∈ θ̄box and π ∈ Π, where: EX [·] is the expectation operator associated with the probability measure governing
{Xt, t = 1, 2, . . .}. Throughout the sequel, we will use the expectation notation Eπ

X,θ̄
(·) := EX

(
Eπ
θ̄
(·)
)
, and we let

Pπ
X,θ̄

(·) be the probability measure associated with Eπ
X,θ̄

(·).
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3 Designing Explore-Then-Commit Policies
To attract more customer clicks while addressing the potential problem of information overload, we design a type of
explore-then-commit policy. We first conduct product feature display experiments and estimate the unknown param-
eters θ̄ via likelihood maximization, and then we optimize product information provisions to the later visitors based
on the estimated model. In addition to learning about the unknown weights Θ̄ and ᾱ, the algorithm provides a certain
degree of variation in the number of product features in the exploration stage so that it can better estimate the impact
of overloading information on customers’ click behavior.

We first describe the maximum likelihood estimation procedure. Given the observed customer features (x1, . . . , xt),
the seller’s past displays (a1, . . . , at), and the customers’ click responses (F1, . . . , Ft) = (f1, . . . , ft), the log-
likelihood mapping, ˜̄θ = ( ˜̄Θ1, . . . ,

˜̄Θm, ˜̄αT , β̃)T 7→ ℓ̄t(
˜̄θ), is

ℓ̄t(
˜̄θ) :=

t∑
s=1

(1− fs)β̃g(cs) + fs
˜̄Us − log

(
eβ̃g(cs) + e

˜̄Us

)
for ˜̄θ ∈ R(n+1)(m+1)+1,

where ˜̄Us := ˜̄α·x̄s+
∑m

i=1 as,i

(
˜̄Θx̄s

)
i

for s ∈ [t]. We show that ℓ̄t(˜̄θ) is strictly concave, and we denote the maximum

likelihood estimator (MLE) as ˆ̄θt+1 = argmaxθ̃∈R(n+1)(m+1)+1

{
ℓ̄t(

˜̄θ)
}

. Moreover, let ˆ̄ϑt+1 = Pθ̄box

{
ˆ̄θt+1

}
be the

truncated estimator, where Pθ̄box : R(n+1)(m+1)+1 → θ̄box is the projection mapping from R(n+1)(m+1)+1 onto θ̄box.

After deriving the truncated MLE ˆ̄ϑt+1, policy π can exploit the estimated model to optimize product feature displays
for the remaining periods.

Due to the nature of explore-then-commit algorithms, we need to carefully design product displays in the explo-
ration stage so that we can obtain a sufficiently accurate estimate for the model. To do so, we connect the estimation
accuracy to the empirical Fisher information matrix. In particular, we show that with high probability, the minimum
eigenvalue of the Fisher information, µmin

(
J̄t

)
, is lower bounded by

min

µmin(ΣX) · µmin

(
t∑

s=1

(
asa

T
s as

aTs 1

))
, µmin

 t∑
s=1

 g(cs)
2 −g(cs)a

T
s −g(cs)

−g(cs)as asa
T
s as

−g(cs) aTs 1

 .

Based on the above relationship, we hope to display the product features in the first t periods to ensure that both
µmin

(∑t
s=1(a

T
s , 1)

T (aTs , 1)
)

and µmin

(∑t
s=1(−g(cs), a

T
s , 1)

T (−g(cs), a
T
s , 1)

)
increase in the order of t. To

achieve it, we propose the following conditions: (i) we select m+1 experimental display vectors, say â1, . . . , âm+1 ∈
{0, 1}m, such that (âT1 , 1)

T , . . . , (âTm+1, 1)
T form a basis of Rm+1; (ii) we select m + 2 experimental display

vectors (which can overlap with the previous m + 1 display vectors), say â′1, . . . , â
′
m+2 ∈ {0, 1}m, such that

(−g(ĉ′1), (â
′
1)

T , 1)T , . . . , (−g(ĉ′m+2), (â
′
m+2)

T , 1)T form a basis of Rm+2, where ĉ′i =
∑m

j=1 â
′
i,j ; (iii) we display

each of these experimental vectors sufficiently many times in the exploration stage. By following the above guidelines,
we can make µmin

(
J̄t

)
≳ t with high probability. Consequently, if the explore-then-commit policy π satisfies the

above conditions in the exploration stage, the estimation error of the truncated MLE will decay at the rate
√

log t
t with

respect to the number of experimentation periods.

Proposition 2. (ESTIMATION ERROR) Suppose that a policy π ∈ Π devotes the first t periods to experimentation. If
the product displays are chosen deterministically in the experimental stage and:

1. There exist l1, C1 > 0 and m+1 different product display vectors â1, â2, . . . , âm+1 ∈ {0, 1}m, where concate-
nated vectors (âT1 , 1)

T , . . . , (âTm+1, 1)
T form a basis of Rm+1, such that for any t ≥ C1, the display vector âi

has been selected at least l1 t times for all i ∈ [m+ 1];

2. There exist l2, C2 > 0 and m + 2 different product display vectors â′1, â
′
2, . . . , â

′
m+2 ∈ {0, 1}m, where con-

catenated vectors (−g(ĉ′1), (â
′
1)

T , 1)T , . . . , (−g(ĉ′m+2), (â
′
m+2)

T , 1)T form a basis of Rm+2, such that for any
t ≥ C2, the display vector â′i has been selected at least l2 t times for all i ∈ [m+ 2],

then there exist finite and positive constants κ2, ρ2, and t1 such that

Pπ
X,θ̄

(
∥ ˆ̄θt+1 − θ̄∥2 ≤ ρ2[(n+ 1)(m+ 1) + 1] log t

t

)
≥ 1− κ2[(n+ 1)(m+ 1) + 1]

log t

t
,

for all θ̄ ∈ θ̄box and t ≥ t1, where ∥ · ∥ denotes the Euclidean norm.

Now, we design a specific policy that satisfies the conditions specified in Proposition 2. The policy LSAoN, i.e.,
Algorithm 1, uses the first ⌈Tλ⌉ periods to experiment with various product features: the policy either displays one
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product feature at a time (i.e., at = ei for i ∈ [m]), displays all the product features simultaneously (i.e., at = 1), or
displays none of the additional product features (i.e., at = 0). We can verify that the concatenated vectors

(eT1 , 1)
T , . . . , (eTm, 1)T , (1T , 1)T

form a basis of Rm+1 as long as m > 1. Furthermore, we notice that the set of vectors {e1, e2, . . . , em,1,0} ⊂
{0, 1}m make sure that the concatenated vectors

(−g(1), eT1 , 1)
T , . . . , (−g(1), eTm, 1)T , (−g(m),1T , 1)T , (−g(0),0T , 1)T

form a basis of Rm+2 as long as mg(1) ̸= g(m). Note that if g(·) is strictly convex, then we always have g(m) >
mg(1) for m > 1. Due to the cyclic nature of the exploration stage, the number of appearing times for each display
vector in {e1, e2, . . . , em,1,0} is proportional to the length of the exploration stage. Therefore, the LSAoN policy
generates a sufficiently accurate estimate after the exploration stage based on Lemma 2. Then, we can prove the
following expected regret guarantee for the LSAoN policy.

Theorem 1. (REGRET) Let π be the LSAoN policy with the first ⌈
√
T ⌉ periods devoted to experimentation. Then,

there exist finite and positive constants C̄ and t̄2 such that
∆π

θ̄ (T ) ≤ C̄2m[(n+ 1)(m+ 1) + 1]
√
T log T

for all θ̄ ∈ θ̄box and T ≥ t̄2.

Algorithm 1 (LSAoN policy: Learning with Single, All, or Null Product Features)

1: INPUT: (i) m: the total number of product features. (ii) T: time horizon. (iii) λ ∈ (0, 1): a parameter
adjusting the length of exploration stage; the first ⌈T λ⌉ periods are for exploration.

2: (Learning)
3: for t = 1, . . . , ⌈T λ⌉ do
4: Compute the residual of t module (m+ 2), i.e., set r ≡ t mod (m+ 2).
5: if r = 0 then
6: Set at = 0.
7: else if r ∈ {1, 2, . . . ,m} then
8: Set at = er
9: else

10: Set at = 1.
11: end if
12: end for
13: (Estimation) Compute the log likelihood ℓ̄⌈Tλ⌉

(
˜̄θ
)

for ˜̄θ ∈ R[(n+1)(m+1)+1] and the maximum likeli-

hood estimate ˆ̄θ⌈Tλ⌉+1 := argmax ˜̄θ
ℓ̄⌈Tλ⌉

(
˜̄θ
)

.

14: Set the projected estimate ˆ̄ϑ⌈Tλ⌉+1 = Pθ̄box

{
ˆ̄θ⌈Tλ⌉+1

}
.

15: (Earning)
16: for t = ⌈T λ⌉+ 1, . . . , T do
17: Upon observing the customer’s feature vector Xt = xt, select the optimal display of product features

based on the estimated model, i.e., set at = argmaxa∈{0,1}mP̄
(
a;xt,

ˆ̄ϑ⌈Tλ⌉+1

)
.

18: end for

4 Numerical Study
4.1 B2B Field Experiment and Model Calibration
In this section, we introduce a B2B field experiment we conducted in collaboration with a medical equipment agent.
This agent has the authority to sell medical equipment in Mainland China on behalf of a worldwide leader in tissue
simulation for medical imaging and radiation therapy, and its targeted clients are mainly hospitals and other medical
institutions. The scope of products includes various phantoms for every imaging modality. For our purpose, we select
a popular product, a multi-modality abdominal biopsy phantom.

On the agent’s website, the product page displays relevant information about the product, and the customers can
click on the product graph and the buttons to consult online and contact the agent. The agent’s question is how much

7



product information it should display on the product page to attract customers. In addition to the basic information,
such as the product’s name, brief illustrations of its use, category, product’s manufacturer (brand), product origin, etc.,
the agent can also display additional graphical information (various graphs of medical imaging) and/or additional text
information (detailed itemized characteristics about the product). In our field experiment, we call the additional text
information our first treatment and call the additional graphical information our second treatment. Then, based on
whether we apply each treatment, we have four versions of the product page (4 = 2 × 2). For simplicity, we can
denote these versions as {a1, a2}, where aj = 1 means that we apply the jth treatment and aj = 0 otherwise.

When each customer arrives at the product page, the system will randomly display one of the four versions to the
customer with equal probability. We monitor whether the customer clicks on any place in the prespecified area of the
product page, and the customer’s clicking is a binary indicator of her/his interest in this product. Therefore, we can
observe the customers’ clicking behavior in response to different versions of the product page. We ran our experiment
from September 7th to October 28th, 2023, and recorded the number of customer visits and clicks as follows.

Versions of product page Number of visits Number of clicks Clicking rate
{0, 0} 56 12 21.43%

{0, 1} 51 12 23.53%

{1, 0} 58 20 34.48%

{1, 1} 54 11 20.37%

Table 2: Data of field experiment. In version {0, 0}, there is no additional information. In version {0, 1}, there is
only additional graphical information. In version {1, 0}, there is only additional text information. In version {1, 1},
there are both additional text and graphical information.

Based on the data in Table 2, we notice that additional text or graphical information increases the clicking rate
compared to the plain version without any additional information. In particular, the text information seems to have
a stronger promotion effect than the graphical information. However, if we add both text and graphical information
to the product page, the clicking rate decreases relative to the plain version. This observation demonstrates a kind of
information overload phenomenon in our field experiment: when either treatment in isolation increases the clicking
rate of customers, they together cause a negative effect in attracting customers.

We now fit our model using the above data in Table 2. Since our field experiment has no customer contextual
information, we can utilize a special case of clicking model (1). Given the agent’s display of the product features for
customer t, at = (at,1, at,2) ∈ {0, 1}2, customer t’s preference for this product is denoted as Ūt = α+at,1θ1+at,2θ2,
where ᾱ ∈ R is a constant, and θ1, θ2 ∈ R denote the weights of these two additional product features (text and
graphical information) to customers. Then, the clicking probability of customer t is expressed as

P̄ (at;α, θ1, θ2, β) =
exp

(
Ūt

)
exp

(
βg
(∑2

i=1 at,i

))
+ exp

(
Ūt

) ,
where β > 0 characterizes the degree of information overload. For calibration, we have a certain flexibility in choosing
function g(·), and we use g(t) = t2 for simplicity. By maximum likelihood estimation as discussed in Section 3, we
obtain the following estimates for model parameters: α̂ = −1.2993, θ̂1 = 1.0785, θ̂2 = 0.5417, and β̂ = 0.4210.
4.2 Performance of the LSAoN Policy
Next, we illustrate the performance of the LSAoN policy (see Algorithm 1) in our calibrated model. We know that
in the calibrated model, the best display option is only to show the additional text information, i.e., a∗ = {1, 0}, and
the optimal expected click probability (equivalently, optimal single-period revenue given unit revenue for each click)
is P̄ ∗(θ̄) := P̄ (a∗;α, θ1, θ2, β) = 0.3448. In our simulation study, we let λ = 0.5, and the algorithm uses the first
⌈
√
T ⌉ periods to experiment with different displays for arriving customers.
Figure 2 depicts the average performance of the LSAoN policy for the calibrated instance. Note that for each T ,

simulation results are conducted over 1000 replications to compute the average regret. We consider selling horizons
ranging from T = 2, 500 to T = 50, 000. The regret in Figure 2 seems to be of order

√
T , as predicted by Theorem 1.

5 Concluding Remark
Motivated by a field experiment conducted in the airline industry, we study the prevalent information overload problem
in the context of personalized digital advertising and product recommendation. In particular, when the seller displays
information for the promoted product, showcasing all the product characteristics can sometimes impair customers’
willingness to purchase, thereby decreasing the click-through rate. We first establish a new feature-based logit model to
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Figure 2: Performance of the LSAoN policy. The graph illustrates the dependence of the regret on T for the
calibrated instance.

explicitly capture the information overload behavioral aspect of customers’ clicks. Then, we consider an online setting
where the seller needs to learn from data about customers’ interests in various product features and the magnitude of
information overload while maximizing the cumulative click-through rate. To address the exploration-exploitation
tradeoff, we propose explore-then-commit type algorithms by carefully designing product display experiments in
the exploration stage. Using maximum likelihood estimation, our algorithms can accurately estimate the unknown
problem parameters and achieve the expected cumulative regret of order

√
T log T .

To test the value of study in practical settings, we conducted a B2B field experiment in collaboration with a
medical agent who sells tissue simulation equipment for medical imaging and radiation therapy to institutions in
Mainland China. By randomly displaying different webpage versions of a popular product to arriving customers, we
observe the information overload phenomenon from our collected click data. In particular, although a sole graphical
or text information boosts the customers’ click rate, displaying them simultaneously can backfire. We calibrate our
model with the experimental data and find our proposed algorithm performs well empirically.
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